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Abstract

The present work characterizes static behaviour of a CSTBR with existing food chain relationship, for a case when base carbon and energy
source exhibits toxic influence on enzymatic pathways of all microorganisms. Some bifurcation diagrams for representative process parameters
are presented, together with characteristic phase plane plots. Conditions leading to induction of persistent oscillations of substrate and cell

concentration are derived, and ways to avoid them are also given herein.
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1. Introduction

In biochemical reactor systems that are open to environ-
mental influences, microbial composition often differs from
that of inoculum. Organisms, e.g., bacteria, that are directly
responsible for converting supplied substrate into (as in was-
tewater plants) non-toxic products, become a basis of a food
chain. These bacteria serve as a food source for holozoic
organisms, e.g., protozoa. This means, that microbial reactor
is a suitable place for creation of a classical predator—prey
system. Such a system, through a number of mechanisms,
deeply influences a sequence of biochemical processes.

Chemical engineers and biotechnologists early had to
tackle with problems that arise from a presence of a protozoa
in a bioreactor. These were noticed soon after first runs of
activated sludge plants. Effects of protozoan activity in inner
environment of these plants were also noted and early works
discussed possible advantageous influences that protozoa
could exert on a process. An opinion on the role that protozoa,
especially of Ciliata type, play in biocenosis of a bioreactor,
was changing over a span of several decades. Protozoa were
thought of as an indispensable component of properly oper-
ated aerated-sludge plant [ 1], but also as an obstacle in over-
all biochemical reactions, that take place in a reactor [2]. At
present, existence of protozoa in activated sludge is treated
positively as one of the conditions for effective biochemical
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purification, as pointed out in work of Ratsak et al. [3]. The
following factors are quoted to justify beneficial effects of
protozoan predation on bacteria in biochemical units.

(a) Flocculation of bacteria into biological flocs: what
prevents wash-out, broadens a range of allowable flowrates,
and increases subsequent sedimentation velocity [4]. This
flocculation may be caused by adhesion of bacteriato a mucus
excreted by protozoa during digestion, as suggested early by
Watson [5]. This hypothesis suggests, that process of pro-
tozoa feeding contains a feedback loop in itself. Namely, if
predators (protozoa) absorb some quantity of free-swim-
ming preys (bacteria), it results in occlusion of the rest of
bacteria in secreted mucus, and that in turn creates a shortage
of food for protozoa. Actually, in correctly operated processes
with a diversified biocenosis, a microbial flocs may contain
up to 90% of all bacteria [6]. Other researchers, e.g., Gide
[7], explain a process of microbial flocs creation in activated
sludge as an selective adaptation of bacteria to predator activ-
ity. True reasons are probably a combination of above-men-
tioned effects.

(b) Removal of free-swimming bacteria, i.e., those open
to influence of predacious protozoa, gives significant
improvement in product quality (e.g., purified water in case
of wastewater treatment plant) [4].

(¢) Reduction of biomass produced, that would have to be
utilised otherwise [8]. In aerated sludge plants, excessive
biomass is often a troublesome waste, requiring dewatering
and subsequent treatment.
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(d) Some species of protozoa, strongly adapted to feeding
on fibrilous forms of bacteria, prevent from activated sludge
bulking {9].

(e) There are hints to believe that swimming protozoa
intensify a flow of nutrients and dissolved oxygen to bacterial
aggregates, thus decreasing diffusional resistances [ 10]. This
occurs due to intensive movement of some parts of protozoa
cell.

(f) In microscopic investigations of activated sludge, pro-
tozoa are convenient indicators of its physiological state
[11].

From the above-mentioned data, it may be concluded that
the effects of presence of protozoa in biochemical systems is
beyond doubt a phenomenon that should not be ignored.
Consequently, that explains numerous attempts to establish
a mathematical model of bioreactor biocenosis, that would
allow to anticipate, a priori, effects of protozoa activity on a
process efficiency. Since number of possible substrates,
microbial species that inhabit the reactor, and resulting food-
chain interconnections is obviously vast, at present it seems
impossible to take all of them into account during model
formulation. Even existing environmental and laboratory
experimental data often contradict each other. Facing this, it
sounds reasonable to utilise unstructured kinetic models ina
study of steady-state and dynamic behaviour of abiochemical
system. A simplicity of such an approach, together with gen-
erality, have an advantage over sophisticated models, that
include some effects, while still neglecting another.

Relatively simple mathematical model for predator—prey
system was first derived in a book by Lotka and Volterra
[12]. More precise formulation was given by Kolmogorov
[13], who formulated, basing on an intuitive knowledge of
dynamical features of such a system, general principles that
model equations should obey. Basically, all attempts to pred-
ator—prey system modelling can be divided into formulation
of continuous models [14] or discrete ones [15]. As far as
chemical engineering is concerned, continuous models are
preferred, due to both ease of mathematical manipulation,
and life-time of organisms under consideration. One may also
mention about stochastic approach [ 16], that is less popular,
although offers great perspectives.

Beginning from the early 1970s, one can notice steadily
increasing number of publications on biochemical reactor
modelling, either theoretical or experimental, that take into
account an existence of a predator-prey relationships. A skel-
eton of almost every mathematical model consists of three
differential (or difference) equations. These describe mass
balance of a limiting substrate, bacteria (prey) and protozoa
(predator). Besides these equations, additional balance equa-
tions are usually formulated, their number and character
depending on assumptions related to the reactor biocenosis.
For instance, Canale et al. [ 17], took into account fact that
substrate could appear in two forms, one that is readily
degradable by bacteria and the other, more resistant to bio-
conversion. Curds [ 18] considered appearance of more com-
plex food chain, that included two kinds of both substrate,

bacteria and protozoa. Toyoda and Kanki [ 19] in their inves-
tigation of a three-phase bioreactor, divided predators into
two groups, namely free-swimming and ‘creeping’ ones, with
different feeding habits. Sudo et al. [20] formulated model
that regards flocs as undergoing cyclical processes of disin-
tegration and restoration, what in turn causes periodical short-
ages of food supply for predators, since only bacteria on an
outer surface of a floc are available for protozoa. Ratnam et
al. [21] took into account adhesion of bacteria to reactor
walls and biofilm production. Pavlou [22] developed amodel
with assumption, that some part of bacteria in a reactor is
hidden from predation. A numerical analysis of coupled bio-
chemical reactors with prey and predators was carried out by
Taylor et al. [23], who demonstrated effects of overlapping
oscillations, which each of the reactors generated
independently.

The above-mentioned works deal mainly with dynamics
of a bioreactor. They prove the existence of stationary attrac-
tors, like stable node and stable focus, and non-stationary,
suchas alimit cycle. Apart from these, appearance of unstable
focus was shown. So far, literature lacks steady-state multi-
plicity and stability analysis, for case when non-Monod, or
substrate-inhibition kinetic models are concerned. This
problem is therefore dealt with in the present work.

2. Model formulation

Let us consider a continuously stirred biochemical tank
reactor with two types of microorganisms. Its mathematical
model is formulated based on the following assumptions.

(a) Two averaged ‘pseudospecies’ inhabit the bioreactor:
bacteria and protozoa, the latter preying on the former. In
fact, this is a simplification of a real situation, when biocen-
osis consists of many species.

(b) Specific rate of substrate consumption by bacteria is
expressed by Haldane equation. A growth of protozoa may
be approximated using the quasi-Monod kinetic, as justified
by the work of Proper and Garner [24]. Here, protozoan
growth rate expression is modified by insertion of term that
takes into account susceptibility of eukaryotic organisms to
a toxic substrate,

(c¢) A reaction broth is assumed to be homogeneous.

(d) Growth of bacteria is limited by one substrate. In case
of an aerobic process this assumption means that liquid is
saturated in dissolved oxygen. Protozoa are unable to feed on
dissolved substrate.

(e) A part of a reactants’ stream that leaves the reactor is
recycled back to it, after some dewatering (by sedimentation
process). In practice, sedimentation module can be a settler
or a hydrocyclone with a low shear stress. Dynamic of that
module is not considered here.

(f) There are no time delays, that could result from recy-
cling part of an outlet stream, dynamics of flocs formation,
or feeding and growth mechanisms.
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(g) Death and lysis of cells are neglected, and entire bio-
mass is postulated to exhibit a metabolic activity at the same
level.

(h) Yield coefficients for bacteria and protozoa are taken
as constants.

The considered reactor, together with characteristic flo-
wrates and concentrations is depicted in Fig. 1. Dimension-
less concentrations of substrate, bacteria and protozoa are
defined with respect to substrate concentration in the feed
stream as follows:

a.By €[0;1] 1

The recycle stream, after passing through sedimentation
module, possesses higher concentration of biomass than that
in the reactor. A degree of biomass densification is defined
by n coefficient:

_SB”CBE _ CpCPE

1 €[0;1) (2)

where cyg and cpg are concentrations of bacteria and protozoa,
respectively in a stream that leaves a separator. Equations
describing reactor dynamics are given below.

d 1
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The overall residence time 7 is computed with respect to
feed stream Fy,. This formulation allows to omit a recircu-
lation coefficient in model Eqs. (3a), (3b) and (3c). Terms
ra, s and rp that appear in Eqs. (3a), (3b) and (3c) are
kinetic functions defining, respectively the rate of uptake of
a limiting substrate, growth rate of bacteria and protozoa.
Some elementary conditions these functions should fulfil
were defined by Kolmogorov [13]. It may be proved that
expressions given below are consistent with these conditions:

1
ra(a,B)= Y—-n(a)ﬁ (4a)
BA
1
ra(a.By)=p(a)B— Y—g(a,ﬁ)v (4b)
PB
re(a.By)=g(a,B)y (4¢)

Functions u(a) and g(a, B) are the specific uptake rates
of substrate and bacteria

pla=—22 (5a)
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Fig. 1. A continuous stirred tank bioreactor with recycle and biomass
sedimentation.

k
p(ap)= — B (3b)

o
+ ——
Ke+B+ -
In a vector notation, Egs. (3a), (3b) and (3c) may be
rewritten as follows:

i—f =f(x,A,E), x=(a,By) (6)

At the steady states dx/d¢=0, thus Eq. (6) take the form:
0=f(x,A,§) )]

where x is a state variable vector, whereas A and & are vectors
of parameters, divided into process parameters and kinetic
parameters:

A=[tncacl, E=[Ypa Y pp.kkp, K, Ksp:K1,K1p]

Values of kinetic parameters, both for protozoa and for
bacteria, may be estimated quantitatively only in a relative
manner. Exact values, obtained from pure cultures, so far,
give only a general overview of growth kinetics when proc-
esses with mixed cultures are concerned. The fact that data
from pure cultures are non-additive, might be ascribed, e.g.,
to the fact that protozoa can excrete compounds that stimulate
bacterial growth (Mallory et al. [25]). A solution to the
problem in question is to assume values of kinetic constants,
that may be thought of as ‘generic’ for bacteria and coexisting
protozoa. Basing on this reasoning, data given by Pawlowsky
and Howell [26] (k=026 h~!, K,=0.0254 kg m~3,
Ky=0.173kg m~?, Yz, =0.616), were taken for an analysis
of the model. These data were obtained from experiments
with phenol biodegradation, which is a troublesome waste
component, e.g., in oil refining industry. Specific bacteria
uptake rate, defined by Eq. (5b), is an analogue of a Haldane
equation. Yield coefficient of protozoa from bacteria is
assumed to be constant, what is justified by experimental
works by Curds and Cockburn [27]. Kinetic coefficients for
protozoa should comply with a condition, that organisms on
a higher trophic level have longer characteristic times (e.g.,
of cell fission or biomass doubling), than those occupying
preceding position in a food chain. This constraint is, apart
from specific examples, universally obeyed. In accordance
with that rule, values of kinetic coefficients for protozoa are
takenaskp=1/2-kand Kgp=2: K;. A coefficient that reflects
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inhibitory influence of substrate on protozoa metabolism
Kip=2/3-K;, takes into account their higher sensitivity to
dissolved substrate. Yield coefficient of protozoa biomass
from unit biomass of bacteria, obtained empirically, varies
from 0.35 to 0.7. In the present work value Ypp =0.5 was
used.

Admissible values of parameters in vector A should be
subject to some constraints. Concentration of limiting, toxic
substrate in a feed stream will be bounded by value of 1.5
kg/m®. When phenol is used as the substrate, there exists a
possibility of its biodegradation by bacteria even in a case of
higher concentration. However, viability of eukaryotic organ-
isms (that protozoa represent) is rather doubtful with such
an environment toxicity level. Since death of microbial cells
in kinetic terms (Eqgs. (5a) and (Sb)) is omitted, it seems
rational to assume rather short residence time of all micro-
organisms in the bioreactor. Implicitly, this means that eco-
system does not reach an age which could be considered as
advanced. Here, a value 7,,,, =20 h is accepted, what in most
cases is a short residence time, when microbial reactors with
toxic substrate are in focus. Although it is possible to reach
a high densification ratio ), even up to 0.9, concentration of
a biomass in a recycled stream would in that case contradict
some assumption made during model formulation. Firstly, it
would denote substantial difference between residence time
of liquid and biomass. Secondly, if one assumes the time that
reactants spend in a sedimentation module is roughly pro-
portional to densification coefficient, for high values of 1
time lag of state variables would be significant, in relation to
their values in reactor. That, in turn, would influence the
reactor dynamics. In the light of this reasoning, a value of 7
in computations will not exceed 0.4.

3. Quantitative analysis of the model

In system of Eq. (7) variable y appears linear. It is there-
fore possible to eliminate it from the system, what would
result in a decrease of dimensionality of the model by one.
Although such operation offers easier determination of attrac-
tors in a modified state space («, B), it would on the other
hand complicate interpretation of the results. This is because
there are two possible types of solution, with y=0and ¥>0,
both being numerically correct, but each denoting different
physical state of the reactor.

Structure of the stationary states for nonlinear objects can
be represented in a form of a parametric dependencex =f(A).
Inlet substrate concentration c,y, in a case of the specific
example of a reactor used in waste treatment industry, is a
parameter that cannot be freely adjusted. Similar situation in
case of a densification coefficient 7 can be ascribed to a fact
that sedimentative properties are highly dependent on bio-
mass separator used. On the other hand, residence time 7is
relatively easily adjustable to a required value. Consequently,
it is beneficial to create and analyse parametric dependence
diagrams, setting 7 as a bifurcation parameter.

For subsequent comparison, introductory analysis of a
reactor without protozoa (y=0) should be done first. In that
case (Fig. 2) diagrams of parametric dependence a=f,(7),
B=/>(7) consist of trivial solution branches ( washout steady
state) and of a nonzero steady-state solutions branch, that
forks out from the previous in a point of static-trivial bifur-
cation. A limit point singularity is also encountered on the
non-zero branch. The 7 coordinate for this point denotes the
lowest value of the residence time, that may be attained in a
properly operated reactor. Increase of substrate concentration
in an inlet stream makes the static bifurcation point occurs at
higher values of 7. With K; — « a middle, nonzero and unsta-
ble stationary state vanishes, and Eq. (5b) transforms into
Monod equation of growth. It may be shown, that for the case
without a predator and with kinetics considered, only station-
ary attractors occur, i.e., stable and unstable nodes, and saddle
points, the latter denoting middle stationary state.

When a predator is introduced into the system, its static
characteristics undergoes a qualitative change. The second
transcritical bifurcation appears in a point where solutions
with nonzero protozoa concentration branch out. The highest
concentration of microorganisms and the greatest attainable
substrate conversion, which may be obtained in areactor with
an existing predator, are characterized by points on stationary
state branch, that are located in vicinity of the new static
bifurcation point 7s,. Locus of a steady state conversion,
given by parametric dependence on 7, is definitely different
in case with y> 0, in comparison with situation when y=0.
If the predator is absent from the bioreactor, decrease of
values of T toward 7, (i.e., approaching the point where
productivity is lost) results in slow reduction of a substrate
conversion and bacteria concentration in an outlet stream.

When a predator appears, static characteristics changes.
Substrate conversion and bacteria concentration increase,
together with residence time reduction, until a singularity

point of dependence a=f(7), B=f,(7), ¥y>0 occurs.
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Fig. 2. Steady-state bifurcation diagrams of bioreactor without protozoa, for
several values of ¢, (=03} ( ) Stable states; (- - -} unstable
states.
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Increase of values of these state variables may be monoton-
ical, or they may attain a local minimum. Values of concen-
trations « and B are at the same time lower than those in a
case without a predator. Further decrease of Tresults in wash-
out of protozoa from the reactor, i.e., values of vy are equal 0.
Since then, values of state variables « and 8 are identical to
those in a case without protozoa. The value of a bifurcation
point mentioned above has an abscissa 7 that is placed in a
neighbourhood of value for 7 p. Since a situation, when 7in
the reactor falls below 7 p corresponds to settling on a lower,
stable and trivial steady state, then protozoacell concentration
is a representative indicator for a danger of a complete loss
of reactor productivity. The protozoa cell concentration
decreases monotonically when 7— 75, from a right hand
side.

The fact, that signs of first derivatives d3/dr and dy/dr
are mutually opposite, can be ascribed to differences in
kinetic coefficients of bacteria and protozoa populations. That
in turn resuits in uniqueness of nontrivial stable state, and in
further consequence the lack of limit point on branches
a=f,(7), B=f(7), for the process carried out in presence
of the predator. Moreover, stationary attractors’ characteris-
tics of a considered system changes. Since part of eigenvalues
p=k+ivof a Jacobian matrix, obtained from linearization
of the model equations, have nonzero imaginary parts, result-
ing solutions are expected to be periodic in time.

From bifurcation diagrams depicted in Fig. 3, one may
conclude that three types of solutions may be achieved in a
bioreactor: coexistence of both bacteria an protozoa, presence
of bacteria alone, or washout of all microorganisms. When a
value of 7< g, is fixed in a reactor, introduction of the
protozoa to the system, resulting with its successful inocu-
lation, is impossible. On the other hand, for values of resi-
dence time greater than 7gg;, successful inoculation of the
predator depends on initial values of the state vector; this
results from reactor dynamics.

When one scans a trivial solution branch, starting from
7=0 and moving toward high values of residence time, a
static bifurcation point is encountered (Fig. 4). In this point,
previous stable and trivial solution becomes unstable, and
new branch emanates, with initial derivative dy/dr> 0. The
new branch denotes appearance of a stable node solution type
in a state space. Moving further right on a nontrivial solution
branch, a point 7o is met, where one pair of eigenvalues
changes from real to complex conjugate. It implies that the
system, when perturbed locally, returns to the previous state
through dumped oscillations. With further increase of
values of 7, one approaches a point, where product
k12 k12 * D <0, v, , #0. This is a Hopf bifurcation point
(center), where a ‘soft’ transition to sustained oscillations
takes place. Upon passing the point, previous stable nodes
becomes unstable, and values of @, 8, v in the state space
tends toward dynamic attractor. The attractor is a limit cycle,
that surrounds unstable nodes of steady state solutions; ampli-
tudes of the concentrations grow steadily with increasing
values of 7. These oscillations are undesirable as far as effi-
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Fig. 3. Steady-states bifurcation diagram at the presence of bacteria and
protozoa (7=0.3, car=1.0kgm™2). ( ) Stable states; (- - -) unsta-
ble states; (M} static bifurcation point; (x) Hopf bifurcation point.
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Fig. 4. Dependence of protozoa cell concentration y on 7and phase portraits
of bioreactor in {3, ¥} space, corresponding to different values of residence
time 7. ( 7p, Tos1» Tos—singular points).

ciency and safety of the process is considered. If phenolic
compound is a limiting substrate (as in the case under study),
its large fluctuations can cause transient concentrations in
outlet stream that are above admissible level (even with
acceptable mean concentration), and result in environmental
pollution.

Change of value of the n coefficient, which indicates
degree of densification of a biomass in a recycled stream has
got an effect different from that in a case without a predator.
Increase of values of the parameter causes densification not
only of bacteria, that convert substrate, but also predators,
that prey on these bacteria. Generally, increase of densifica-
tion coefficient moves static bifurcation point (and also the
point with the lowest possible 7 in the working bioreactor),
toward lower values of residence time. Simultaneously, this
increase can cause changes in steady state structure and the
reactor dynamics. This is exemplified by Fig. Sa—e, which
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Fig. 5. Phase portraits of bioreactor in (8, ¥) space for several values of densification coefficient 7 (car=1.0kg m™3).

are plotted for several values of 7. When 1=0, a washout
and complete loss of productivity occur. With increase of 0
to 0.1 the system reaches a stationary state; this is connected
with complete predator extinction. Fixing value of 7 at 0.2
results in nonzero steady state values of both 8 and . On
setting n=0.3, sustained oscillations of concentration arise
in the bioreactor. With 1= 0.4 washout and biologica! ‘death’
of the bioreactor occurs again. The last phenomenon takes
place in a virtue of change of attractor basin and is therefore
of global type.

From the preceding analysis one may infer that there are
three possible types of attractors of model Eq. (6) with non-
zero protozoa concentration: a stable node, a stable focus and
a limit cycle. Residence time domain for each of the attractor
types depends on values of the two others process parameters,
namely c,, and 7. Fig. 6a, b present dependence of range of
7 for which a specific attractor is expected, on c,y, for two
arbitrarily chosen values of 71, i.e., n=0.1 and n=0.3.

In the region of low c,y, values of 7 corresponding to the
existence of a limit cycle, are rather high. Moreover, washout
of the protozoa occurs with relatively high values of residence

time. The last observation results from a lower inflow of
substrate, that can be utilised by bacteria, which are an inter-
mediate component of a food chain sequence phenol-bacte-
ria-protozoa. Stable focus solutions are encountered for a
wide range of 7, whereas the 7 range of stable nodes is sub-
stantially smaller. Range of values of 7for stationary solution
becomes considerably narrower along with increasing values
of ¢4 For high inlet substrate concentration, domain of 7,
that guarantees existence of stable focus, is very small. A
domain of  for stable node solutions at the same time is
somewhat wider; domains relation between the two men-
tioned types of solution is reversed with change form low to
high ca.

Apart from the stationary solutions, there exists the limit
cycle for almost all values of . This dynamic attractor accom-
panies majority of nonzero solutions. In a case of higher
densification coefficient (Fig. 6b), relationships discussed
above are topologically identical, but changes of types of
solution occurs for lower values of 7.

As far as industrial bioreactors are concerned, there are
several circumstances that can cause unavailability of some
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Fig. 6. Plot of dependence 7=f(cas) expressing change of steady-state solutions type for model Eq. (7). (a—n=0.1; b—n=0.3) (1) wash-out, (2) stable

node, (3) stable focus, (4) limit cycle.
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part of bacteria for protozoa. For example, bacteria inside
activated sludge flocs or those living inside a biofilm devel-
oped on the reactor wall, are hardly available as a food source
for free-swimming protozoa. One can take this fact into
account through introduction of some minor changes to func-
tions describing growth of both bacteria and predators. To
this end we utilise a ‘hiding place for prey’ concept, thatcame
from the field of population ecology (see for instance, May-
nard Smith [15]). With assumption that some constant part
of bacteria, expressed by the dimensionless concentration *
(for simplicity, relative to the whole reacting volume), is
inaccessible for protozoa, the kinetic equations (Eqgs. (4b)
and (4¢)) can be rewritten as follows:

1
ra(a,By)=u(a)B- ;—g(a,Bs)Y (8a)

PB

rP(avB’7)=g(avﬁs)Y (8b)

A quantity S, is concentration of bacteria exposed to pre-
dation by protozoa, defined as:

— JB—B* for B>p*
Bs'{o for B<p* ®

With assumption of negligible diffusional resistance, the
modification introduced is not contradictory to homogeneity
of reaction mixture, postulated during formulation of the
model. There are also other possibilities of definition of bac-
teria reservoir unusable for protozoa, e.g., as proportional to
concentration of all bacteria suspended in activated sludge
liquor.

After introducing of the modifications quoted above, solu-
tion characteristic of Egs. (6) and (7) undergoes apparent
change. A domain of values of rfor which solutions of unsta-
ble focus type exist, together with encircling limit cycle, is
bounded on both ends. Change of attractors characteristics
from stationary to dynamic ones, and in reverse direction,
occurs at either of the two points of Hopf bifurcation (Fig.
7). For values of 7lower than value for the first (leftmost)
bifurcation, the solutions can be of stable node or stable focus
type; that is, similarly to the situation when all bacteria are
open to influence of protozoa. With values of rincreased over
value of the rightmost Hopf bifurcation, only stable focus are
found. Both points of dynamic catastrophe are characterized
by ‘soft’ transition from oscillations to stable states (i.e., there
is no unstable limit cycle for given kinetic parameters). This
behaviour can be visualized by plotting values of 7 domains
for each type of solution, vs. Cay, as it is done in Fig. 8. For
values c,¢ below 0.445 kg/m? a limit cycle does not appear
at all, and majority of range of 7 values correspond to solu-
tions of stable focus type. Beyond value c,¢=0.445 there
exists a domain of 7 corresponding to oscillatory solution.
The domain substantially broadens along with increasing cae,
but even at high inlet substrate concentration there is the
second point of Hopf bifurcation. After passing this point
toward higher c,,, sustained oscillations change to dumped
oscillations.
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Fig. 7. Dependence of degree of conversion (1—a) on 7 for y>0, when
hiding places for bacteria exist. (8*=0.1). ( ) Stable states; (- - -)
unstable states; (IB) static bifurcation point; (x) Hopf bifurcation point;
(#wwewes) minimal values from limit cycle.
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Fig. 8. Plot of dependence r=f(c,) expressing change in steady-state solu-
tions type of model Eq. (7), for the case with hiding places for bacteria.
(B*=0.1) (1) wash-out, (2) stable node, (3) stable focus, (4) limit cycle.

The comparison of steady state structure, for cases with
and without hiding places for bacteria, is done in Fig. 9a,b,c.
From Fig. 9a, it may be concluded that evident change of the
structure takes place. Dependence of substrate conversion
degree (1—a) on 7 is no longer monotonical, since this
variable then passes through a minimum. Although the min-
imum exists for T domain where steady state solutions are
unstable, after passing the rightmost Hopf bifurcation point
the substrate conversion rises steadily in a region of dumped
oscillations. This means the substrate conversion approaches
monotonically, when T values are increased, a highest pos-
sible value, that is the one in a case without a predator.
Stationary values of bacteria concentrations 3 for a case with
hiding places (Fig. 9b) are only slightly higherin comparison
to case without hiding places. On the other hand, protozoa
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Fig. 9. Comparison of parametric dependencies of substrate conversion (a), bacteria concentration (b) and protozoa concentration (¢) on residence time; (1)

y=0; (2) presence of hiding places for bacteria; (3) all bacteria available as a food source for protozoa (7=0.2, car=0.7 kg m™2) (
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Fig. 10. Phase portraits of the bioreactor, c,r=1.0 kg m~3, 7=02; (a) presence of hiding places for bacteria, 8* = 0.1, (b) no hiding places; (- - -) separatrix.

concentration is apparently higher when part of bacteria is
unavailable. This unexpected behaviour may be interpreted
through a posteriori inspection of necessary conditions, that
have to be accomplished so as to steady state Eq. (3¢) for
dy/dr=0 could describe nontrivial solution. Since growth
rate of protozoa rp( a,B,7) is lower when part of the bacteria
is hidden from predation, then operation at a nonzero steady
state (with y> 0) requires higher protozoa concentration. If
not, at a given fixed fresh stream inflow Fyo, protozoa are
flushed out of the bioreactor. This requirement for maintain-
ing a nontrivial steady state greatly influences the reactor

dynamics, and extents of basins of attractors in particular,
both trivial and nonzero. Two phase portraits in Fig. 10a,b
represent the situation. From these figures, one may draw a
conclusion, that domain of attraction of a limit cycle enlarges
in the instance of existence of hiding places for bacteria. Apart
from that, amplitude of oscillation of cell and substrate con-
centration decreases. For values of process parameters chosen
herein, in both cases (Fig. 10a and b) the limit cycle is the
only possible nonzero attractor. Comparing Fig. 10aand b, a
decrease of amplitude of the limit cycle is apparent. Similarly,
values of the variable a are subject to change within narrower
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range. From the above analysis it follows that occurrence of
the hiding places in a multispecies bioreactor can in fact
improve process course.

4, Conclusion

The biochemical reactor, described by sets of Egs. (6) and
(7) reveals various static characteristics, depending on pres-
ence of predator cells. In some ranges of a residence time,
there exist three steady states, including the one with a non-
zero protozoa cell concentration. When the reactor reaches a
stable state with zero concentrations of all microorganisms,
its retrieval to a previous state is possible by inoculation only,
while maintaining 7 at sufficiently high values. Also, occur-
rence of the two transcritical bifurcation points implies that,
for some values of 7, a successful, stable introduction of the
predator to a system (or its further existence) is impossible.

When protozoa cells are present in the reactor, a high-
amplitude oscillations of a reactant concentrations may
appear. A range of values of 7they cover, may be limited by
assuring a proper development of microbial flocs. When these
flocs are present, a second point of Hopf bifurcation emerges
on a branch of parametric dependence x =x( 7) for high val-
ues of residence time. This means a decrease of oscillation
amplitude takes place, what is connected with confining of
range of 7 for oscillatory solutions on both sides. As far as
dynamics is concerned, one can eliminate occurrence of
dumped oscillations through change of a biomass densifica-
tion coefficient. In a case with hiding places for bacteria, a
higher substrate conversion is reached, what is crucial when
environmental pollution preventing is concerned. Another
benefit is an increase of domain of attraction of the nonzero
states, either stable or oscillatory. Because a limit point 7 p
in a branch of parametric dependence lies in vicinity of static
bifurcation point 7gs;, (by mean of 7 value), so washout of
a predator signify that the lowest possible residence time to
be attained in an operating reactor is approached. This obser-
vation can partly explain fact that protozoa in an activated
sludge may be utilised as an indicator of its current state.

5. Nomenclature

casCmy cp  Concentrations of a substrate, bacteria and
protozoa, respectively [kg m ™3]

Caf Substrate concentration in a feed stream [kg
m~3]

CBE> CPE Concentrations of microorganisms in a stream

leaving an installation, respectively for
bacteria and protozoa [kg m ™3]
Fyo Volumetric flow of a raw stream [m*h™']
Fy, Fyp Volumetric flows through a reactor and
recycle loop, respectively [m*h™']

k, kp, Ks,  Kinetic constants

KSP9 Klv KIP

1% Volume of the bioreactor [m®]

Yias Yep Yield coefficients of bacteria and protozoa

a By Dimensionless concentrations of substrate,
bacteria and protozoa, respectively

B*, B, Dimensionless concentrations of bacteria
unavailable and available for protozoa

n Biomass densification coefficient

n=k+iv Complex eigenvalue

T Residence time in a bioreactor [h]

Tips Tas;s  Abscissa coordinates of some singular points

Tgs» Tos  in bifurcation diagrams [h}
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